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Ground States of VBS Models on Cayley Trees 
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We study the thermodynamic limit of the ground states of VBS models on a 
Cayley tree. We prove uniqueness for coordination numbers z~4  and the 
occurrence of N6el order for z ~> 5. Our main technical tool is a transfer matrix 
description of VBS states. 
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INTRODUCTION 

The ma in  pu rpose  of this pape r  is to s tudy in detai l  the t h e r m o d y n a m i c  
l imit  of  the va lence-bond-so l id  models  (VBS mode ls )  on  a Cayley tree as 
defined in ref. 1. F o r  concreteness  let us immedia te ly  in t roduce  the 
Hami l ton ians ,  before going to more  technical  matters .  F o r  any z ~> 2 we 
consider  the Cayley  tree ql -z with coo rd ina t i on  number  z (for z = 2 we 
recover  2~, the one-d imens iona l  lattice).  To each site x ~  ql -~ we assign a 
q u a n t u m  spin var iable  with spin s = z / 2 .  Let ( x ,  y )  denote  a pa i r  of  
nearest  ne ighbors  in the tree and  p(z) the o r thogona l  p ro jec t ion  on to  the x, y 

subspace  in C z + I |  "+ i, loca ted  at the sites x and  y, which cor responds  
to max ima l  to ta l  spin, i.e., z = z/2 + z/2. The formal  H a m i l t o n i a n  H of our  
mode l  is then defined as 

H =  ~ p(z) (0.1) 
X, y 

<x,y) 

This H a m i l t o n i a n  is a posi t ive o p e r a t o r  (being the sum of  posi t ive terms),  
and  it has the pecul ia r  p rope r ty  of  possessing a g round  state with vanishing 
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energy. This is the starting point of the analysis of any VBS model. Using 
an extension of a technique introduced in ref. 7 for treating one-dimen- 
sional VBS models, and also invoking an argument of ref. 2, we can con- 
struct an infinite-volume ground state co of the Hamiltonian (0.1), with the 
following property: for any finite volume A ~ T z and any finite-volume 

p(z) there exists ground state t/A of the local Hamiltonian HA = ~ ( x ,  y> = A --x, y, 

a constant C > 0 such that 

rlA(A*A ) <~ C o o ( A ' A )  

for any observable A in the volume A. In other terms: the local restriction 
coA of co is a convex combination in which all ground states of the volume 
A appear. 

We are now ready to formulate the problem we want to analyze in this 
paper: Determine all states co o of the infinite tree which are weak limits of 
the following type: 

co0(A) = w~lirn c%A(A) 

where the A n are a sequence of increasing finite volumes in the tree (even- 
tually covering all of it) and the bA~ represent a specification of the state of 
the spins at the border of An, i.e., a boundary condition. 

The results of ref. 1 concerning this question are the following: taking 
only homogeneous product boundary conditions (i.e., fixing all the spins of 
the boundary in one and the same direction), one obtains a unique limit 
in the cases z = 2  and z = 3  and nonuniqueness for z~>5. Numerical 
evidence for uniqueness in the case z = 4 was found. 

Here we extend these results in the following way: we consider 
arbitrary nonhomogeneous boundary conditions of tensor product type 
and prove uniqueness in the cases z~<4. Furthermore, in the case of 
homogeneous product boundary conditions and z t> 5, we find all possible 
limits. 

The paper is organized as follows: 

Section 1. We introduce a construction of states for quantum spin 
systems on an infinite Cayley tree. The construction contains the valence- 
bond-solid (VBS) states, which are exact ground states of the class of 
models under consideration. The construction we use is a generalization of 
the so-called finitely correlated states which were analyzed in ref. 7. The 
term "finitely correlated" refers to a fundamental property of such states: 
the space of functionals obtained by conditioning on the "left" half of the 
system is finite dimensional. As we do not intend here to study such a class 
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of states on a tree in its full generality, we will still use the name VBS state. 
We will study in particular how these states depend on boundary condi- 
tions and obtain a transfer matrix technique which appears to be more 
effective than the VBS formalism as used in ref. 1, especially to determine 
questions like symmetry breaking in the thermodynamic limit. 

Section 2. Here we make the ideas of Section 1 concrete by 
introducing the "master" ground state for the VBS models (0.1), i.e., we 
construct the ground state co which is a mixture of all possible ground 
states. It is this state that we are going to decompose using boundary 
conditions of a specific type. 

Section 3. In this section we prove uniqueness in the cases z ~< 4. 

Section 4. This section is devoted to the analysis of the case z >~ 5. 

Section 5. To obtain the explicit expressions for the states in the 
thermodynamic limit from the results of Sections 3 and 4, an additional 
equation has to be solved. The solution is needed, e.g., for computing the 
exact value of the N6el order parameter in cases of nonuniqueness. It is 
then also straightforward to obtain the spin-spin correlation function of 
the model. 

Appendix. In the Appendix useful formulas which arise in the 
representation theory of SU(2) are collected. 

1. C O N S T R U C T I O N  OF VBS STATES ON CAYLEY TREES 

Let z i> 2 be an integer and consider the Cayley tree -2z with coordina- 
tion number z (~z is the unique homogeneous graph with coordination 
number z and no loops; see Fig. 1). By cutting one bond, one divides the 
tree into two disconnected parts, the branches (sometimes called rooted 
trees), which are isomorphic with one another. Sometimes one removes a 
site and thus obtains z equivalent branches. We will mostly work with only 
one of the parts and call it -2+. We call the site of -2z~ which belonged to 
the broken bond the origin (or the root) of the tree. 

\ / \ / \ / \ / l e ve l  3 

\ I / \ / /  \ i /  \ I \ \ k \ I 

(1,1)~NN ~ 1 ,  2) (2, 1 ) ~  ~ 2 ,  2) l e ve l  2 

- , . . (  
( I ) ~  (2) level 1 

level 0 (o) 

Fig. 1. The first three levels of the branch Y~ with z = 3. 
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Useful coordinates  on the positive branch T +  are given by 

g +  = {(il,..., i , ) ] n � 9  N, ike {1 ..... z -  l} for 1 <<.k<<.n} w {(0)} 

(0) constitutes level 0 of the tree and the sites (il,..., i ,) form level n, 
containing ( z - 1 ) "  sites. If x � 9  x =  (il,..., i,), we define N ( x ) = n  to be 
the level of x. 

T +  acts as a semigroup of translations on itself (non-Abelian for 
z >/3): define the translations ~(i,,..., i,) by 

~(il,..., i,)(Ja,..., Jm) = (il ..... i ,) V (Jr ,'", Jm) -- (il ,.,., i , ,  Jl ..... Jr,) 

and of course 

(il ..... i,) v ( 0 ) =  (0) v (i1,..., i , ) =  (il ..... i,) 

such that  z(0 ) = id. 
The "rota t ions"  of T +  are generated by the following set of actions of 

the symmetric group of { 1 ..... z - 1 }, 5P~_ l: for a �9 5~_ 1 define 

 I;I(o) = (o) 

i~(~)(i im) ---- (a(il),  i2,--., im) ( 0 ) ~ 1 , . . . ~  

for all m/> 1. For  n ~> 1 and any element (Jl,..., J , )  of the tree we define a 
ro ta t ion zrl~,...,j, ) at the point  (Jl,..-,Jn) by: for every point  y of the form 

q+l, ,+o>(x) 

jo)(y)- - z(jl,.. . ,  j . ) ( ~ ( 0 ) ( x ) )  ( 1 . 1 )  

and all other  points of Vz+ are left invariant  by ~,(~ It is then obvious 
"~ (Jl  ,-.., J~)" 

that 

/.~ (o-) o ' r  o ",'r (~ 
(Jl,..-, Jn) (Jl,..., Jn) = T, (Jl  ,.-., Jn) '~ (0) 

For  all x e T + ,  and n � 9  ~,  we define a finite volume (x, n ) ~  T ~ as 
follows: 

(x, n) = ~,(0, n) -- {v~(Y) I y e  (0, n)} ( 1 . 2 )  

where 

(0, n ) = { y � 9  I N ( y ) ~ n }  

with N(V) the level to which y belongs. We call a finite volume of the type 
(x, n) a triangle in the tree. This local structure is extended to the whole 
tree by taking as the origin an arbi t rary site x e T z. 
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]n any site x E ~-' we now consider a copy d~ of a finite-dimensional 
C*-algebra ~ with unit. s~r is then defined by 

y ~  ( x , n )  

and ~he full algebra dr_, of the tree is obtained in the usual way by an 
inductive limit (1~ 

d w =  U s~(~.,) 
x ~ T Z ,  n E f N  

In this paper we will only be concerned with the case where the one-site 
algebra is the algebra ~ a  of complex d x d matrices. 

We will first give an explicit formula for a local VBS state co on a finite 
volume of the type (0, n). We consider therefore a linear map E, 

where ~ is some auxiliary finite-dimensional C*-algebra with unit element. 
The map E will play a role similar to that of the transition matrix in the 
context of classical Markov processes. Clearly, it must possess specific 
positivity properties. The natural notion of positivity here is that of com- 
plete positivity. (1~ This positivity is preserved under tensoring and com- 
position. As we will restrict our attention to matrix algebras, all completely 
positive maps P from a matrix algebra Jgd, into s//'d2 are of the type 

k 

p(x) = Z v * x v ,  
i = 1  

where the Vi are linear maps from Ca2 into Cal. Besides this positivity 
requirement, we will also impose that P be unity preserving; in terms of the 
V,. this means that ~ i  V* Vi = ~ a2. In fact, we will only need to consider 
the case where P is defined by a single V. Clearly, P will then be unity 
preserving iff V is an isometry. 

Define for all n e N, the nth-level algebras d ~") and ~ " )  by 

x,  N ( x )  = n x ,  N ( x )  = n 

For all X e ~ we define 

Ex: ~ |  Y~--~x(Y)=E(X| 

822/66/3-4-17 
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and furthermore we put ~(x ~ = E x and for all n >~ 1 and X =  @ x,N(x)=n Xx ~ 
~'(') and Y of the form Y= @y,U(y)--n Yy, yye~| we have 

~ ) :  ~ ( "+ ' ) -+~( " ' :  Y ~ - + E ~ ) ( Y ) = ( ( ~ )  E~))(Y) 
x,N(x)=n 

We then extend this map linearly to general XE d (") and Y~ ~(.+1). We 
also define 

= (1.3) 

where ~ is the unit element of d ("). 
With boundary conditions for the volume (0, n) we mean a positive 

functional P(o,.) of ~ and a positive element b(o, m 6 ~  ("+*). For any such 
boundary condition we define a state of d(o,.) by the linear extension of the 
following formula: for all Xk ~ d (~), 0 ~< k ~< n, 

CO(o,.)(Xo| | ..- |  p(o,.)(E(x~ E~, ) . . . . .  E~)(b(o,.))) (1.4) 

The complete positivity of E guarantees the positivity of the functional: as 
the set of completely positive maps is closed under taking tensor products 
and composition of maps, all the maps E (~ . . . . .  ~(') are completely 
positive; together with the positivity of the boundary conditions, this 
implies the positivity of the functional o). If the boundary conditions are 
chosen such that co(~ ) -- 1, we have defined a state of ~r A state co on 
the volume (x, n) can then be obtained by applying a suitable translation 
and using boundary conditions (P(x,.), b(.,.)). 

It is obvious that two sets of "boundary conditions" 

(p(~,.), b(~,.)) and (P~x,.), b}~,.)) 

normalized such that both define a state of d(. , .) ,  and related by a positive 
constant ~ as follows 

p~x,.) = 2p(x,.), b~,.) = 2-1b(~,m 

define the same state. So we do not have to distinguish between them. 
To obtain states ~o of the infinite-volume tree, one needs sets of 

boundary conditions {(p(.,.), b(.,.)) [ x s T  ~, n s  ~o} which satisfy the 
compatibility conditions 

if (x ,n )=(y ,m) ,  then ~o(y,~)]~,l~,.)=o)(~,. ) (1.5) 

Indeed, if (1.5) is satisfied, then there exists a unique state (n on ~'v~ such 
that for all x and n, r [~,(...). In general, compatibility conditions 
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impose strong constraints on the construction of correlation functions. It is, 
however, a particular merit of the VBS construction, as presented in (1.4), 
that one is always able to find boundary conditions that guarantee com- 
patibility. In the sequel we will only consider boundary conditions that are 
simple tensor products, i.e., each b(x,,) is a simple tensor product of 
elements of ~ .  This kind of boundary condition is exactly equivalent to 
fixing the state of the spins (of the system itself) at the boundary of the 
volume. Moreover, we will take the boundary conditions local in the 
following sense: 

p(x,,)=p(x,,m=--px for all n,m>.O (1.6) 

b(x,m = b(x v ( 1 ) , n - l ) @  " ' '  | v (z-1),.-~) 

= @ b(x v y,o) = @ cxvy  (1.7) 
y, N ( y )  = n y ,  N ( y )  - -  n 

This means that the boundary conditions can be attached to the sites of the 
tree. Therefore we call such boundary conditions {(Px, cx)[ x ~ Z }  local 
boundary conditions. In this situation we have the following theorem, 
which provides us with sufficient conditions for compatibility. 

Theorem 1.1. For all x e 3  -z, let P(x,.) be a state of ~ and 
cx a positive element of N. Consider the local boundary condition 
{(Px, Cx)[ xe-~z} as described in (1.6)-(1.7); then formula (1.4) defines 
the local restrictions of a unique state co on the tree, i.e., co t~r o)(~,,,), 
if the following three conditions are satisfied: 

(i) p~(c~) = 1 for all x e gz. 

(ii) ~-(')(b(x,.))=b( . . . .  1) '~Cx=~-(cxv(1)|174 l)). 
(iii) For all Ye ~ ,  and k = 1,..., z -  1, 

p~(E(cx~(1)| '-- |174 Y|174 "''C~v(~-l)))=P~v(k)(Y) 

PrOOf. Let (x ,n)  and (y,m) be two triangles in T~ such that 
(y, m ) c  (x, n). We have to show that 

( s  [ J ( y , m )  = (JO(Y, m )  

It is easy to see that it is sufficient to consider the following two situations: 

1. x = y , n = m + l .  
2. n = m + l , y = x v ( k ) , f o r s o m e  l<~k<~z-1. 

In the case 1 one applies (ii). In the case 2 one applies (iii). Then (i) 
guarantees the normalization of the state. | 
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2. THE M O D E L  A N D  M A I N  RESULTS 

On the Cayley tree ~-z with coordination number z >~ 2, we consider a 
spin-s model with s=z/2. So d = d r  1. The (z+l)-dimensional  
irreducible representation of SU(2) on C ~+~ is denoted by Dz/2. Its gener- 
ators are denoted by S x, S y, S ~. For any two half-integers sl, Sz e �89 the 
representation Ds~| decomposes according to the Clebsch-Gordan 
series: 

D~ | Ds2 ~ DI~ t_~21 @ Dks~-s2l + i " ' '  @ Dsl + s2 

We denote by p(z) the orthogonal projection onto the spin-z subspace of 
C z+~ |  z+*. The bonds of the tree are the nearest neighbor pairs of the 
form {x, x v ( k ) } ,  l<~k<~z- l ,  and we write P ( x ~ ( k ) f o r  the spin-z 
projection located at the bond {x, x v (k)}. 

The following SU(2)-invariant Hamiltonian with nearest neighbor 
interaction was first introduced in ref. 1. It is of exactly the same type as in 
the one-dimensional VBS models and therefore much of the analysis is 
similar to that developed in ref. 7. For all x ~ 3 -z, n >~ 1, 

z - - 1  

Z E (2.1) 
yE(x,n--1)  k = l  

where (x, n) is the triangle defined in (1.2). 
Using formula (1.4), we now define a set of positive functionals of the 

local algebras at(x,,). Take ~ = ~2 and b(~,,> an arbitrary positive element 
of ~("+~), and px a positive functional of ~.  As in the construction of the 
ground states of the one-dimensional VBS models in ref. 6, we define P; with 
the aid of an isometry. It follows from the Clebsc'h-Gordan series that 
there exists an up to a phase unique isometry V: C2-+ C~+~| (| ~-1~ 
satisfying 

O~/z(g)|174 1 V= VD~/2(g) for all geSU(2) 

and 
V * V= 3 ~./tr 

Then one defines for all XEJgz+ 1 and Ys (|162 z 

rg(X| Y)= V ' X |  YV (2.2) 

With these ingredients we can describe the finite-volume ground states of 
the Hamiltonians (2.1). 

T h e o r e m  2.1. (i) All the local states co(x,n ), constructed with the 
completely positive map E (2.2) and arbitrary boundary conditions, are 



Ground States of VBS Models on Cayley Trees 947 

ground states of (2.1); indeed, for all y e  (x, n - 1) and all k =  1 ..... z -  1, we 
have that have that 

CA) ~ / ) ( z )  (x,n)t~y. y ,! (~)) = 0  

(ii) All ground states of H(x.n ) defined in (2.1) are contained in the 
face generated by the set of all states co(x,n ) constructed with the completely 
positive map f and arbitrary boundary conditions. 

Proof. This is a mere application of Theorem 2.1 of ref. 2. | 

The interesting thing now is to determine the infinite-volume ground 
states of the models. For this to make sense, one has to define first what 
exactly the infinite-volume model is and also what is meant by ground 
state. There are at least the following four possibilities: 

(i) A ground state is a state of ~ w  such that for all x e 3  TM and all 
= 1, . . . ,  z -  1, = 0 .  

(ii) A ground state is a weak limit of the form 

co(X) = lira COA(X ) 
AT Tz 

where for the finite volumes A (forming an net increasing to TZ), COA is a 
ground state of the corresponding finite-volume Hamiltonian, and X is any 
local observable. 

(iii) A ground state is weak limit as in (ii), but where the states 
c~  are now states of the local algebra dA with minimal energy for 
Hamiltonians of the form 

HA = ~ p(z) ~ Y,~A ~ b o n d  
b o n d s  in A 

where Y6A is a self-adjoint element in the algebra of the boundary sites 
of A. 

(iv) A ground state is a state of the infinite-volume algebra which 
satisfies for any local observable X the inequality 

lim c0(X*[H(x,n), X])~>0 
(x, n)  T V ~ 

where the H(x,n) are defined in (2.1). 

The Cayley tree is a pathological lattice in the sense that it is not at 
all clear that even the energy density is the same for all ground states in the 
sense of (iii) or (iv). This is due to the fact that for any finite volume the 
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number of boundary sites is larger than the number of interior sites (see, 
e.g., the discussions in refs. 3, 5, and 9). This is a good reason to prefer (i) 
or (ii) as a definition of ground state. In fact, one can show that for the 
models under consideration the definitions (i) and (ii) are equivalent. 

As mentioned earlier, we will restrict the class of boundary conditions 
in the following sense: we will consider local boundary conditions of the 
tensor product type [see Eqs. (1.6) and (1.7)]. Such local boundary condi- 
tions are of the form 

b(x,,,)= @ Cxvy (2.3) 
y ,  N ( y )  = n 

where for all x, y ~ T ~, 0 ~ c~ ~ y is a positive 2 • 2 matrix. If the cx depend 
only on the level N(x) of x, we will call the boundary conditions 
homogeneous. It should be remarked that the notion of homogeneity is 
defined in terms of the levels and that the notion of level itself depends on 
the orientation of the branch in the tree and the choice of the root. It can 
be seen that homogeneous boundary conditions of periodicity two, i.e., 
only depending on the parity of the level, are consistent with any choice of 
the root and branch orientation. The conditions of Theorem 1.1 now are as 
follows: 

(i) px(Cx)= 1 for all x E 7  z (2.4) 

(ii) Cx=~Z(c~vo~|174 (2.5) 

(iii) For  l<~k<~z-l, forall ye~ ,  

Px(~(cx v (17| "'" |  v (k- l ) |  Y|174 ""Cxv (z-1)))=Px,,(k)(Y) 
(2.6) 

At this point we remark that in the usual setup of the VBS construc- 
tion (see, e.g., ref. 1), where one works with a set of vectors f~,~, the most 
general boundary conditions one naturally considers are exactly the ones 
we have introduced here. 

Next we show that for the models under consideration there is at least 
one solution of (2.4)-(2.6). 

Proposition 2,2. Define Cx=~ ~/ /2  and px(Y)=�89 Y, Y~Jg2. 
Then Eqs. (2.4)-(2.6) are satisfied, and therefore they define an infinite- 
volume ground state of (2.1) in the above sense. 

Proof. E is defined with an isometry V, so it is unity preserving and 
(2.5) is automatically satisfied. (2.4) is also obvious. To check (2.6), we use 
the intertwining property of V: 
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Tr ~(1 | -.- | Y| -.. |  

= T r  ~(Y@~ | ..- |  

=~  dgTrD*/2(g) V*(Y| - . - |  
~s  u(2) 

= Tr V* [ dg D*/2(g ) YD1/2(g) | 1 
J S  u(2) 

= T r  ~(~) �89 Y 

= T r Y  II 

VDl/2(g) 

- . |  

It is also straightforward to see that the thermodynamic limits of local 
states obtained with boundary conditions of the tensor product type are 
infinite-volume ground states whose local restrictions are all VBS states 
determined by boundary conditions satisfying (2.4)-(2.6). 

The next section is devoted to the proof of the uniqueness of the 
solution for the Cx of (2.5) in the case z ~< 4. In Section 5 we will then also 
show that there is a unique solution for the Px such that (2.4) and (2.6) are 
satisfied. Section4 is devoted to the study of (2.5) in the case z~>5 and 
homogeneous boundary conditions, i.e., the ex appearing in (2.3) depend 
only on the level of x, Together, Sections 3-5 give the complete proof of the 
following result. 

T h e o r e m  2.3. (i) z ~< 4 ~ uniqueness of infinite-volume ground 
state: Let co be the infinite-volume ground state of the Hamiltonian (2.1) 
defined in Proposition 2.2. For any set of boundary conditions of the 
product type (2.3) {bx, n Ix e q/-z, n e ~ } let coz, n be the state on the volume 
(x, n) defined in (1.4) using the ~ defined in (2.2). Then, 

l i m  co(x ,n)  = co 
(x ,n )TY ~ 

(ii) z ~> 5 ~ occurrence of NOel order: For z/> 5 there are two types 
of ground states of the Hamiltonian (2.1) obtained with homogeneous 
boundary conditions of product type: 

(a) A translation- and SU(2)-invariant ground state with free 
boundary conditions, i.e., for x E 7 z, Cx = ~ and Px = the normalized trace 
in (2.4)-(2.6). 

(b) All other ground states with homogeneous boundary conditions 
of product type have a nonvanishing N6el order parameter as defined in 
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the introduction of Section 4. They break both the translation and SU(2) 
invariance and can be explicitly constructed using the homogeneous 
solutions of the compati[~ility conditions (2.4)-(2.6). These solutions are 
given in Sections 4 and 5. 

The translation-invariant solution (a) is unstable in the sense that any 
other homogeneous product boundary condition will produce one of the 
N6el ordered ground states described in (b). 

3. THE CASE z~<4, PROOF OF UNIQUENESS 

In fact in this section we are only going to study the solutions of (2.5): 
we will show that in the case z ~< 4 there is only one solution [-up to a 
trivial constant to be determined by (2.4)], namely Cx= ~ for all x e T  =. 
Strictly speaking, to prove the uniqueness of the solution of (2.4)-(2.6), this 
result has to be complemented with the uniqueness of the solution of (2.6) 
for any given set {Cx} and this we will do in Section 5 (for all z). 

So the problem of this section is to prove that for z = 2, 3, 4 the only 
set { Cx ~> 0 I x ~ T = } satisfying 

Cx=~-(Cxv (1)| . ' '  |  v (z_l)) 

consists of multiples of 1. Let us start by giving the explicit form of the 
maps ~z, defined in the previous section, in a more convenient representa- 
tion. 

~: (J~2)| "~,~'~2 and as a basis for Jg2 we choose {1,~rx, ay, az} , 
where the cr, are the usual Pauli matrices. We denote the three Pauli 
matrices put together in a vector by ~ (~= = 2S~). ~ is linear and invariant 
under arbitrary permutations of the z -  1 factors of its argument [see (A2) 
of the Appendix] and therefore the maps ~ are completely determined by 
the following relations: 

For z = 2, 

~(~)=~ 

~(~=) = -~o= 

For z = 3, 

~(~|  

~-(~ | ~ ) = - ~ =  

~(~  | ~ = �89 
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For  z -- 4, 

~ d | 1 7 4  

~(o-~,| 1 |  --~r~, 

~(o-~, | o-~ | 1) = �89 

~(a,~ | o; | o8) = -1o~ ,  

~(a.,. | a~, | a_.) =0  

These relations can be obta ined using the informat ion on SU(2)- inter-  
twiners collected in the Appendix.  

The  cx e J/J2 are supposed to be positive and  5 0  (otherwise the state 
cannot  be normalized).  I t  is therefore sufficient to prove  the following 
theorem: 

T h e o r e m  3.1.  For  z = 2, 3, 4 and the ~(') defined as in (1.3), and 
any sequence (b,), b , =  @x,N(xI=,C~, with the Cxe~/2 positive and non-  
zero, we have 

~:(1) . . . . .  ~(n)(b.)  
l im 2 = 1  e J/2 

, ,  ~ T r { ~ ( 1 )  . . . . .  ~ ( ' ) ( b n )  } 

ProoL As the cz are posit ive and nonzero,  we can normal ize  them 
such that  Tr  cx = 2. The positive c e Jg2 such that  Tr  c = 2 can be con- 
veniently paramet r ized  in terms of the Pauli  matrices: c = 1 + x ' ~  where 
x ~ B s =  { y e ~ 3  [ Ilyll ~<1}. The m a p  ~_ can then be studied in terms of a 
m a p  Y: (B3) • B3 defined by 

~ ( c 1 |  ' "  |  
"~ + ~(Xl , . . . ,  X z _  1) " ~ = 2 

Tr{~(cl , . . . ,  c~_1)} 

where c~=1 +xf ' r  In terms of these Y we have to prove  that  for an 
arb i t ra ry  choice of vectors x~,..., ~, e B 3, n = 1, 2, 3,..., and 1 ~< ij ~< z -  1, we 
have 

lim F o F (2) . . . . .  F(")((x~...., in)) = 0 e ~3 (3.1) 
n ----~ o o  

where the ]:~') are defined in ana logy with the ~_(') in (1.3). No te  that  ~: 
inherits f rom ~ the pe rmuta t ion  symmet ry  

~:(xl ,..., x~_ 1) = ~:(x~u) ..... x , u -  1)) (3.2) 
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We now prove (3.1) for the cases z = 2 ,  3, and 4 separately. In each case 
our strategy is to show that, provided ILXlll,..., IlXz-111 ~< r, we have a bound 
IL~:(Xl,..., xz 1)[] <~fl(~)(r), from which one gets 

IlU:o ~(2) . . . .  ~:(")((Xix... i,))ll ~< (~ (max{ Ilxi,,..., ~~ }) 

We then show that the iterates (ofl(~)) n (r) converge to zero. 

z = 2  
This is the case of the one-dimensional lattice; the result is well-known 

from refs. 1 and 6. For  completeness we formulate it here in terms of I:. In 
this case ~: is given by UZ(x) = - (1 /3 )x .  Hence we have fl(Z)(r) = r/3, and the 
iteration converges exponentially fast. 

z = 3  
From the formulas for ~ we easily compute I:: 

and hence 

x 1 + x 2 

•(XI' X2) "~-- 3 + x l"  x2 

II~(Xl X2)ll 2 IlXlkl2"~ I I X 2 N 2 - 4 - 2 X I ' X 2  

, = 9 + 6x17-~x2 ~ - ~ . x 2 ~  

In order to maximize this over Xl, x 2 with norm less than r, first fix x 2 and 
the scalar product x l"x2 .  The latter constraint leaves Xl free to change 
within a plane. It is clear from the above expression that II~:(xl,x2)ll 2 
becomes maximal if we choose Llxxll = r, and similarly Ilx2jl = r. Hence, with 

= r - 2 x l  �9 x 2 we have 

2r2(1 + 7 ) <  4r 2 
I[~:(xl, x2)ll 2 =  (3+rZ7)2 (3 +r2)  2 

Hence 

2r 
/~(3~(r) - ~< �88 r 

- - 3 + r  2 .3 

and convergence is exponentially fast. 

z = 4  
We follow the same lines as in the previous case, the only difference 

being that now the various estimates become more delicate. 
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Using  the formulas  for 6, it is easy to verify that  D z is now given by 

(5 + X 2 " X3) X 1 -}- (5 -~- Xl ~ X3) X 2 -V (5 "~ X 1 " X2) X 3 
W(x I , x 2, x 3 ) =  

5(3 + x I �9 x 2 + Xl ~ x 3 -~ x2 ~ X3) 

Again  we can assume tha t  rlxll[ >~ []x2JP ~> [[x3[I. Fu r the rmore ,  we a d o p t  the 

no t a t i on  sl  = x 2 " x 3 ,  s 2 = x l " x 3 ,  s3 = X l " X 2 .  
We compu te  

f]2(x 1 x2, x3)l[2= ( 5 + s l ) 2  Hxlj[2+2(5+sl)(5+s2)s3+cycl'perm" (3.3) 

' 25(3 + sl + s2 + s3) 2 

Not ice  that  again  we can restr ict  ourselves to vectors  of  equal  length. To 

see this, we use the fact that  we can always find two vectors  Y2 and  Y3 such 

that  r = [Ixlll = Hy2lJ = ][Y3ll and S 1 = Y2" Y3, S2---- X l "  Y3, and  s3 = x l "  Y2 and  
we observe tha t  

IllZ(xl, x2, x3)ll2 ~ < ]iN(x1, y2, y3)H 2 

Next  we compare  this s i tua t ion  of three vectors of  equal  length with the 
case xl  = x2 = x3; we will show 

I l I : (x l ,  Y2, Y3)ll ~< II[]Z(xl, Xl, Xl)ll  ( 3 .4 )  

from which one gets 

5 + r  2 
fl(4)(r) = r 5 + 5r - - - - - - -7  

The i terates of  this funct ion still converge  to r = 0, albei t  at  a much  slower 
rate:  there  is a cons tan t  C > 0 such tha t  

C 
(o/~(4)) n ( r )  ~ F/l/2 

Let us finally p rove  (3.4). Define 51, ~2, 53 ~ 0 by 

5 3 = 1 X1 " x2 r2 and cycl. perm. 

and put  ~ = 51 + 52 + 53, ~ = 5~ + e~ + e32, r / =  51/;253. The n u m e r a t o r  of (3.3) 
is then given by 

P = r2(225 --  50~) + r4(90 - 50~ + 10~ 2 --  10~) 

+ r6(9 - 8~" - 24 --  6q + 342) 



954 Fannes eta / .  

and the denominator  by 

Q = 25[-9 + 6r2(3 - ~) + r4(3 - ~)2] 

Proving (3.4) then amounts to showing that 

25P 2 5 + 1 0 r  2 + r  4 

r2Q <~ l + 2r 2 + r 4 

or equivalently we have to show that 

g ( r  2) -= 25~ + (53 - 5~ 2) r 2 + (3t/-- 26~ + 11~ + ~2) r 4 

+ (74 + 6t/-- 3~ 2) r 6 + (3 + 3r/+ ~ -- if2) r 8 

~>0 

Note that coefficients of t/ and ~ are positive. So, using ~/>~ 0 and 34 >~ ~2, 
we have 

3g(r 2) 
f f ~ )  ~> 75 + 75r 2 - 3r 4 - 3r 6 -- 2r2~(5 -- 2r 2 -- r 4) 

=__ h(r 2, ~) 

As r2~< 1, the coefficient of ~ in h(r 2, ~) is negative; furthermore, as 
0 ~< ~ 4 6, it suffices to observe that 

h(r 2, 6 ) = 7 5 +  15r2 + 21ra + 9r6>~0 

to conclude the proof. | 

4, N O N U N I Q U E N E S S  IN THE CASE z>~5 

In this section we will restrict ourselves to homogeneous boundary 
conditions. When more than one homogeneous solution of (2.5) is found, 
one can immediately see that there is also an infinite number of 
nonhomogeneous solutions. This fact was already pointed out in ref. 1. 
Working with the subset of homogeneous boundary conditions is 
reasonable because of the 7r-symmetry of the Hamiltonians H~x,n), i.e., 

(~) 
~x (H~x,n~) = H~x,n~ 

re) defined in (1.1). Also, the completely positive map E is with the gx 
permutation invariant in the sense that 



Ground States of VBS Models on Cayley Trees 955 

and the f(") satisfy certain covariance relations under "rotations." It is 
therefore natural to look at weak limits of ground states which are deter- 
mined by homogeneous boundary conditions. By this we mean that the 
boundary spins belonging to the same level in the tree are put into the 
same state. So we still allow for dependence of the boundary condition on 
the level. This is important because we are especially interested in the 
question of whether there are solutions which exhibit N0el order: i.e., 
whether there are states cog,_+, g e SU(2), which satisfy 

COg, + (Dz/e(g)* S~D~/z(g)) = ++-no( - 1 )a(o,x) 

for all x ~ Y:. Remark that on a Cayley tree 

( __ • )d(x, y) = ( - -  1 ) N ( x ) -  g ( y )  

d(x, y) being defined as the number of steps in the shortest path over 
bonds connecting x and y; N(x) is the level to which x belongs, that is, 
N(x) = d(x, 0). 

So, our problem is to determine all the solutions {cx} of (2.5) such 
that the cx depend only on N(x). In other words, we are looking for 
sequences (cn), cn edd2, positive and nonzero, such that 

~2((@Cn+l)Z-1)=Cn for all n~>0 (4.1) 

This analysis will be done for arbitrary z/> 2 and we will see that non- 
uniqueness occurs iff z >~ 5. The fact that there is always at least one 
solution was demonstrated in Proposition 2.2. 

C oo Proposition 4.1. If ( ~)~=0, G ~>0, satisfies 

c~_, = ~((|  ~-~) 

then there exists a g eSU(2)  and a sequence (~,,) of strictly positive 
numbers such that 

{1 + ( -  1) "+' ( ~ . -  1) 
= f l n O l / 2 ( g )  * Cn 

0 

o ) 
l _ _ ( _ _ 1 ) n +  1 ( ~ n _ _ l )  D~/2(g) 

(4.2) 

where the cr e [0, 2] satisfy 

with t(z): [0, 2] --+ [0, 2] defined by 

2 Y~ZSlo(z- -k)xk(2--x)Z-k-1  
t ( z ) ( x )  = _ _  

z + l  z-1 1 52k=oXk(2-- X) z - ~ -  
(4.3) 
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ProoL Define a (nonlinear) operator T (~) by 

T(~): dg2-* Jg2: c~--~ T(~)(c)= f(~)(c) ~-((| z-l)  

where f(z) is a scalar function which will be specified later. Any positive 
c e Jg2 can be diagonalized with a unitary of the type D1/z(g), gE SU(2), 
and by the intertwining property of V we have 

T(Z)(D1/2(g)* (~ Ofl) D1/2(g))~D1/2(g)* T(Z)((~ O~))D1/2(g) 

Using the formulas for the Clebsch Gordan coefficients given in the 
Appendix, it is easy to verify that 

g~Zl(~,/~)) 
with g(~)(~, fl) = g~)(fl, c~) and 

M ml,..., mz-i 
x 1(1/2;1/21z/2,1/2 ..... 1/2;M, ml ..... mz ~}[2 

-- l - -~ , i=1 (mi+ 1/2)} X O~ {Eiz-ll (mi+ 1/2)}f l{z  z - I  

k=0 (z+  1)! 
z - - 1  

- z ( z  + 1) ~ (z - k)  ukflz-1 I~ 
k = 0  

and also 

Z - - I  

g(~)(c~,/3) - z(z + 1~) ~ (k + 1) ~k[3z-L k 
k = O  

It is now convenient to choose the scalar function f(z) in the definition of 
T (z) as follows: 

f(z)(ct, f l )=  2{g~)(ct, f l )+ g(Z)(~, f l )}- t  

Cl ~ - I  }--1 

= tz E k = O  
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The operator T ~z) is now completely described by 

2 - 0  

where 

957 

t~z~(c~) = f~)(c~, 2 -  c~) g(~)(~, 2 -  c~) 

It is then clear that t~z): [0, 2] ~ I-0, 2] and that it has the following 
symmetry: 

t~)(2 - ~) = 2 - t~z)(~) 

Using this symmetry property, one can write the c, as stated in the 
theorem. | 

It is now obvious that we have to study the asymptotics of the 
dynamical system on [0 ,2]  given in (4.2)-(4.3) or equivalently the 
asymptotics of (ot~Z)) ". We first study the function t ~) in detail (Fig. 2). 

Proposition 4.2. 
x~ [0, 2] 

Let z be an integer >12 and define for all 

2 Z z-1 ( z - -k )  xk(2- -x)  Z - l - k  k = O  

z + l  Z ~  xk(2-x) z- l-k 

i 
2) 

" -  t(5) 

J W 

1 2 

Fig .  2. G r a p h  o f  t he  f u n c t i o n s  t Iz} for  z = 2, 3, 4, 5. 
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Then t(z): 

(a) 
(b) 
(c) 
(d) 
(e) 
(f) 
(g) 
(h) 
(i) 
(J) 

[0, 2] -* [0, 2] has the following properties: 

t (z) is monotonical ly decreasing. 

t ~z) is concave on [0, 1]. 

t (z) is convex on [1, 2]. 

t (z) is analytic. 

t~z)(2 - x) = 2 - t(~)(x) for all x e [0, 2]. 

t(z)(o) = 2z / ( z  + 1), t(z)(2) = 2/ ( z  + 1). 

t(z)(1) = 1. 

t(z)'(0) ~ t(~)'(2)= - 2 / ( z  + 1). 

t~)'(1) ~- - ( z -  1)/3. 

We have 

i if x = l  
lim t (Z) (x )= if 0 ~ x < l  

z ~ o O  

if 1 < x ~ < 2  

and for all x e [0, 2] this limit converges monotonically. 

Proo f .  Only the properties (a), (b), and (c) really require a proof. 

(a) Monotonici ty.  We start by making the following substitution: 
r = ( 2 - x ) / x e  [0, + o o ] .  One then has 

z +___11 t(Z)(x ) = g ( r )  - zrz + 1 _ (z + 1 ) r z + 1 (4.4) 
2 ( r -  1)(r z -  1) 

As 

dr 2 
dx x 2 ~ 0 

it is sufficient to prove that  

dg 
dr = g ' >~ O 

to obtain the monotonici ty  of t (z). One first checks that 

(r -- 1)2 (r( -- 1 )2 g ' ( r )  

= { ( r ~ - l + r  ~ 2+  . . .  + l ) 2 _ z 2 r ~ - 1 } ( r _ l ) 2  (4.5) 
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The p roof  will be finished if we show that  for all z ~> 2, r ~> 0, 

(r z - 1  + r Z - 2 +  . . .  q- 1)2>/zZr z - 1  (4.6) 

This we do by induct ion on z. 
Fo r  z = 2, (4.6) follows by the concavi ty  of the square root  function. 

Suppose  that  we have the inequali ty for z. In order  to obta in  it for z + 1, 
it is sufficient to show that  

rZ >~ (z + 1) rZ /2 -  zr  (z-1)/2 

which is equivalent  to 

Z 
- + y Z > ~ z + l  
Y 

for all y~>0. The lat ter  can be seen by observing that  the function 
y ~_+ yZ + z / y  is convex for y > 0 with a unique min imum at y = 1. 

(b, c) Concavi ty-convexi ty .  Start ing f rom (4.4) and (4.5), we verify 
that  

dr 
-- 2g(r) '  -7- - = {(r -- 1) _2 -- z2r : -  l(r~ -- 1) -2} ( r  + 1') 2 

aAc 

Then we calculate the second derivative: 

d ~  , d r \ d r  
z + 2 d 2 t ( z ~  ( z + Z ) ~ r ~ g ( r ) ~ x ) d x  

2 dx  2 

z + 2  r + l  
x 2 (r ~ - l ) 3 h ( r )  

with h(r)  defined by 

h ( r ) = 4 ( l + r + . . . + r  z 1)3 

--  z 2 r ~ - 2 { ( z  - 1) r z+l  + (z + 1) r~+  ( z +  1)r + z -  1} 

We show that  for all z/> 2 and all r >1 O, h(r)>~ O. We develop a similar but  
slightly different a rgumen t  for z even and z odd. Therefore,  for n = 1, 2 ..... 
define 

hl,n(r) = 1 ~  h(r)  for z =  2n + 1 
2r 3. 

1 
h2,.(r) = 4r3~_ 1/2 h(r)  for z = 2n 

822/66/3-4-18 
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With these definitions we have 

h l , , ( r )=  2 ( r - "  + r -n+ l + .. .  +rn)  3 

- ( 2 n + 1 )  2 { n r " + l + ( n + l ) r n + ( n + l ) r  n + n r  ~-1}  

h2,n(r ) = (r -n+ 1/2 + r -n+ 3/2 + ... + r n-  1/2)3 

- n 2 { ( 2 n - 1 ) r  n §  n 1/2 

+ (2n + 1 ) r - "  + 1/2 + (2n - 1) r ~- 1/2 } 

We have to show that these two functions are positive. 

1. We first treat hl,n. For  any k/> 0 define a variable xk by 

Xo = 1 

xk  = rk + r - k  for k~>l 

All the x k are considered as functions of xl .  Because of the symmetry 
h l,n(r) = h l ,n(r- l) ,  it is sufficient to consider r >~ 1 and this makes r ~ x l 
and xl,--~xk, k~> 1, good substitutions. Now hl,n can be written as a 
function of n + 2 variables: 

h l , n = 2 ( X o +  x l  + . . .  + x n ) 3 - - ( 2 n +  1) 2 [nxn+l + (n + l ) x~] 

As hi ,n(1)=0,  it is sufficient to prove 

d 
dxlh~,n>~O for all xI~O 

First check that xk ~> 2 for k >t 1 and that 

dxk f k (Xk_  l-t- Xk_ 3 ""  +)CO) for k o d d  

dxl J k ( x k _ l + x k _ 3 +  + x l )  for k > 0 a n d e v e n  

ko for k - - 0  

All this permits us to obtain the estimate 

d h l , ~ ( X l ) = 6 ( X o + X l  + ... + x n ) 2 \ d x  1 "'" + d x l /  dxl 

- n ( n +  1 ) ( 2 n +  1 ) ( x o + x l +  . - .  + x n )  

> ~ ( X o + " - + x . ) ( 2 n + l ) { 6  ~ k 2 - n ( n + l ) ( 2 n + l ) }  
k = l  

>~0 
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2. To prove h2,n/> 0, we use similar reasoning. We need an additional 
set of variables 

yk=rk--1/2+r--k+t /2  for k =  1, 2, 3,... 

Again h2,~(r)=hz, , (r-1) ,  hz, n(1)=0,  and for all r~> 1 

d n - - 1  

d y l h 2 ' " ( Y ' ) = 3 ( Y  I + . . .  + y . )2  E ( n 2 - k 2 ) x +  
k=O 

4 

n 1 

=3(y~+ ... +y~)~ F~ (n~-k~)x~ 
k = O  

- nZ(2n + 1 ) (2n-  1) y~(y~ + . . .  +y~)  

>~ Y t (Y l  + "'" + Y~) 6n (n 2 
k 0 

- n2(2n + 1)(2n - 1)} 

/>0 

where we have used the relations 

dyk = ( 2 k - 1 ) ( X o + - - .  +Xk_l )  for k = l ,  2 .... 
dyl 

dyl ~ 1  n - -  I 
dy 1+ . . . +  = ~ (nZ--k2)  xk 

k=O 

and the inequalities 

x ~ > 2  for k>~l 

Xo---- 1 

y k >>. y k _ l >~ . . .  >>. y l >~ O 

This concludes the proof of the convexity property of t (~. | 

As a consequence of the properties (a)-(j),  we have a quite precise 
idea of the graph of t(z): see Fig. 2. 
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Proposition 4.3. The solutions c~  [0, 2] of 

t(~)(~) = 2 - 

are the following: 

(i) 
(ii) 

(4.7) 

If 2 <~ z ~< 4, then ~ = 1 is the unique solution of (4.7). 

If z ~> 5, there are exactly three solutions: So, 1, and 1 - So, where 
0 < So < 1. Furthermore, c% is monotonically decreasing to 0 for 
z tending to infinity. 

Proof. The proof is a straightforward application of the properties of 
the function t (z) which are proved in Proposition 4.2. | 

In the next proposition we collect our results concerning the 
asymptotics of (o t(z)) n. For the case z ~< 4 the stated properties are actually 
implied by the results of Section 3. 

Proposition 4.4. Define the asymptotic invariant set of the 
dynamics (o t(z)) ~ as follows: 

Cz= ~ (ot(Z))" ( [ 0 , 2 ] )  
n~>0 

Cz = {~oe [0, 2] I t(~)(c%)= 2 - % }  

= {c%, 1, 2 - %} 

where e0 satisfies (4.7). In particular, C2 = C3 = Ca = { 1 } and for z >~ 5, Cz 
contains exactly three points. Furthermore, (ot(~)) n converges uniformly to 
a stationary point or a limit cycle of period 2, i.e., 

lira sup inf I t (Z)(c0-~ol=0 
n ~ c o  ~e[0,2]  ~OeCz 

The limit cycle of period two occurs when z >~ 5 and corresponds to .... So, 
2 -  ~o, So, .... 

Proof. Define A = c ~ - I  and for all z~>2, A ' = t ( Z ) ( l + A ) - l ;  it is 
then easy to derive the following formulas: 

Then 

2 
for z = 3  A ' = - A - -  

3 + A  2 

A2+5  
for z = 4  A ' = - A - -  

5 A 2 + 5  

for z = 2  j , =  1 -~A 
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Using this information, one immediately obtains for z = 2, 3 that there 
exists a ~ > 0 such that for all n ~> 0 

(or(Z))" (E0, 2 ] )=  E1 - e - %  1 + e  "~] 

the results then follows and C = { 1 }. 
Eor z = 4, also C = { 1 }, and one has that 

11 - (or("))" (~)I ~< 11 -(or(%" (O)l 

As 
lim (o tt4)) " (0)= 1 

n ~ o o  

the uniform convergence follows and C-- (1 }. 
For z~>5, it is easy to see from the properties of t (~), proved 

in Proposition 4.2, that there is uniform exponential convergence to a 
limit cycle of period 2, for all initial conditions g= 1. This cycle is deter- 
mined by the unique solution ~06(0, 1) of t ( z ) ( ~ o ) = 2 - a  o. So 
Cz= {ao, 1, 2 - ~o} .  | 

To summarize, we can conclude that the solutions of (4.1) are given 
as follows: 

(i) If 2~<z~<4, there is, up to a normalization factor, a unique 
solution: c, = ~ for all n. 

(ii) If z >~ 5, there are two types of solutions: (a) the translation- and 
SU(2)-invariant solution c, = 4; and (b) solutions that break the transla- 
tion and SU(2) invariance. They are determined by formula (4.2) with ~, 
equal to one of the nontrivial solutions of Eq. (4.7). 

A more detailed analysis of the behavior of the functions t (z) easily 
shows that in the case (ii) only the symmetry-breaking solutions are stable. 

5. C O M P L E T I N G  THE PROOF OF T H E O R E M  2.3 

In Sections 3 and 4 we have found various homogeneous solutions of 
(2.5). Remember that homogeneous means that cx depends only on N(x) .  
In the case of uniqueness, z ~< 4, the solution for the {cx} is homogeneous. 
In the case z/> 5, we found nonuniqueness within the class of homogeneous 
{cx}. Given such a homogeneous {cx}, we now want to solve Eq. (2.6) for 
the Px: 

Px(~Z(Cu(x)+l(~ "''Cu(x)+l(~ Y(~CN(x)+I@ "''CU(x)+l))-~-pxv (k)(Y) (5.1) 
kth place 
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From the permutation invariance of ~ and the homogeneity of the 
boundary conditions, it is easy to see that (5.1) implies that Px v (k) is inde- 
pendent of k. Therefore, the p~ only depend on the level N(x) of x: 

Px ~ PN(x) 

In Sections 3 and 4 we obtained the solutions c, of (2.5). The 
constants #~ can be calculated using the renormalizing function f(z) which 
appears in the proof of Proposition 4.1: 

n fi  f(~)(am) ' 
m = l  

~- f i  f (z) (2 -- ~0)-- 1 f i  f(z)(~O) 1 
m = 1 , m  o d d  m = 1 , m  e v e n  

/ 1 -- ~o if c% r 1 
= (2 - ao) z - ~z~ 

if cr o = 1 

With the same choice of ~0 the c, are then given by 

[1 + ( - 1 )  "+~ ( ~ 0 -  1) 
Cn : #nD1/2( g)*  \ 0 

We now solve Eq. (2.6) to obtain the p,.  

0 ) 
1 - ( - 1 )  " + l ( c % - l )  Di/z(g) 

(5.2) 

Proposition 5.1. The p,, which satisfy (2.6) are given by 

p .  = v . ~ ( . )  

where e ( n ) = 0  for n even and e(n)= 1 for n odd. 6 o and 61 are the density 
matrices determined by 

0 
b~ ~ 1 --r(~o)) Dx/2(g)* 

Ol=D1/2(g)(1--r(Cto) 0 ) 0 r(~o) D1/2(g)* 

r(c%) ~ [-0, 1] is uniquely determined by imposing that for all Y~ Jg2, 

,L(~-( r |  ( N c l  _ Dz-  2)) = ,~/51 _ , ( r )  
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where Co and cl are given in Proposition 4.1 (forgetting about the #n): 

(o o o )  
c~ = 2 - ~o 

and ~o~ [-0,2] is determined in (4.7); geSU(2) and ~o are the same as 
those which appear in (5.2). We also have 

z--1 
; - = -  Z z 

Zk=o 

and the normalizing constants v, are 

Proof. The dependence of the solutions on the group element 
geSU(2) is easily determined; so we can suppose that g is the neutral 
element and we are left with the following set of equations to solve: 

~o(~2(b | (| z-2) =/~l~l(b) (5.3) 

(5.4) 

in the sense that we have to find 60 and as satisfying (5.3) and (5.4) for all 
bE,////2 and with 20 > 0  and 21 >0.  The Co and Cl are given in Proposi- 
tion 4.1 (up to normalization). 

Now, (5.3)-(5.4) is a linear equation for (60, 61), and it is not difficult 
to derive that it has a unique positive solution. In fact (5.3)-(5.4) can be 
solved explicitly. Consider for 

the linear operator 

L~: J/2--+Jr bF-+~-(b|174 ~-2) 

Define also the automorphism 
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Then (5.3)-(5.4) can be written as 

6O(Lcx(b)) = ,~16 l (b)  

61(L,(~)(z(b ) ) = 2o6o(b ) 

Observe that 

Fannes et  al. 

where 

(~,/~) = _ 

with eigenvectors 

(0 o ~) and (~ 00) 

2. A positive eigenvalue 

z - - 2  

( z - 1 ) z ( z + l )  ~ (k+l)(k+2)~k/3~-2-k 
k = O  

with a nonpositive (diagonal) eigenvector. 
3. A positive eigenvalue 

1 z 1 

~ o = -  Y~ ~k/~z 1 - k  
Z k =  0 

Therefore, we can rewrite the equations as 

G(Lc~(b))= ,h61(b) 

61o ~(Lc~(b ) ) = ;~o(G O ~)(b ) 

The unique solution (30, 61) will therefore satisfy 30 = 31 o z, 61 = 60~ r, and 

61((~ o L c 0 ( b ) )  = 2o61(b)  

The diagonalization of (zoL,)*: /g~' ~ ~ *  is given as follows: 

1. One negative eigenvalue, doubly degenerate: 

z - - 2  
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with a positive eigenvector of the form 

I Ir(~, ~) 0 ) 61 ,, 0 1-r(o~, fl) 

where r(cr fl) is such that for all cr e (0, 1), 1/2 < r(e, 2 - cr < 1. Of course, 
r(e,/?) can be calculated explicitly if necessary. 

Furthermore, one has that 

20 > ~. and 2o > 12_ I 

This immediately shows that the positive solution 6 t is unique if c~ o ~ (0, 1 ) 
and by symmetry also when cos  (1, 2). The case ~o = 1 is straightforward 
to check. | 

T h e o r e m  5.2. Within the class of boundary conditions we studied, 
in the thermodynamic limit, the model (2.1) (i) does not exhibit N6el order 
in the ground state if z - -2 ,  3, 4, and (ii) has N6el ordered ground states 
whenever z ~> 5. 

Proof. The only fact that still remains to be checked is that the N6el 
order parameter does not vanish when z~>5. In order to compute this 
parameter, we have to insert the information that is contained in Section 4 
and in Proposition 5.1 into the definition (1.4) of the state. Doing so, we 
find 

no = po(~-( s z | Co ~  1~) 

Taking ~o ~ (0, 1), there is a constant 0 < r < 1/2 such that 

and it is also straightforward to determine 

~-(SZ|176174 + sO) 

with I s + ] < i s  I. This implies Ino]>0. | 

R e m a r k  5.3. For  all z ~> 2 the symmetric ground state is obtained 
by taking Px = �89 and b(x,,) = 1 for all x e ]-z and all n s N. The two-point 
correlation function is then given by 

~ (z + 2)2 6~,~ _ 
~~176 = i2 
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In fact, one observes this kind of exponential clustering for arbitrary local 
observables. 

Proof. According to formula (1.4), we have to compute 

�89 ~_( S~ (~ ~_ u(c~) I(W( Sfi @ { 2Q(z-1)) ) @ { 2Q(z- 2) ) 

with, for all Y~ M/2, 

Using formula (A9) of the Appendix, we have 

z + 2J l~ (5.5) w( afl (~ ~ 2~(z - 1)) = T 

where the je  are the generators of the two-dimensional irreducible 
representation of SU(2). Using (A10), we have 

D_(J e) = - � 8 9  (5.6) 

and furthermore 

z + 2  
[E(S ~ | J~ | 1 2 ~ -  2) = -6~.~ - - ~  { 2 (5.7) 

Combining (5.5)-(5.7), we get the desired result. | 

Conjecture 5.4. In the cases z = 3 and z = 4 the VBS state con- 
structed above is a pure state of the algebra dv~ with nonvanishing 
entropy density (calculated with the local structure o f  the tree that we 
adopted in Section 1). 

A P P E N D I X  

For convenience we list here some useful "generalized" Clebsch 
Gordan coefficients. The j ' s  are half-integers, the corresponding m's and M 
range from - j  to j in integer steps, and k t> 1 is an integer, indicating the 
number of factors Dj that are considered. Dj is the (2j + 1)-dimensional 
irreducible unitary representation of SU(2). The formulas are taken or 
derived from ref. 8. We have 

<kj; M lj,...,j;ml,..., ink) 

[ \  m J ~ (j--2J 1"] ( 2j "]/( 2k, ,]-~t/2 ~ M m l ~ -  �9 . . -+ , , , e  " " \ j _ m k J / \ k j _ M ] ,  } 
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For j =  1/2 this becomes 

(k/2; m l 1/2,..., 1/2; rn 1,..., mx) 

I (k/2 + ml + . . . + mk)! ( k / 2 -  ml . . . . .  rn~)!] 1/2 
= (~M, ml+ "'" +n'k k !  

For clarity: these are the coefficients in the k-fold tensor product basis of 
the representation space of (| k of the 2kj+ 1 vectors supporting the 
component Dk: in the irreducible decomposition of ( |  j) k. 

Let Vk.j be the intertwining isometry between D(k+l ) j  @ (| k and 
D: (which is unique up to a phase), i.e., 

D(k+l)j(g)| (| k (g) Vk.j= Vk,jDj(g ) (A1) 

for all g 6 SU(2). The invariance under permutations of the mi, i = 1,..., k, 
is immediately visible. This entails, with Qk, j the orthogonal projection 
onto the permutation symmetric subspace of (| 2s+ l)k, the relation 

('~ 2kj+ 1 | Qk, j )  V k , j =  Vk, j ( A 2 )  

We also need, for Jl ~> J2, 

(J l--J2;  M I j , ,  J2; ml, m2> 

=6mml+~2(--1)Jz+m2{[2( j l - -J2)+l] ' (2J2) '}  " -(~'~1~ ~ 

(J, + ml)! (Jl -- ml)! ~1/2 
• (j2+rn2)! (j2--m2)! ( j l - - j 2 + M ) !  ( j l - j 2 - M ) ! )  ~ 

In particular, for Jl - J2  = 1/2, 

(1/2; M Ij, j -  1/2;ml, m2> 

~--~ ~M m I + m2( - -  1) j --1/2 + m 2 [ 
1 1/2 

' (2j~- l ) j j  

( j + m l ) !  ( j--m1)! ~1/2 

• ( j--  1/2+m2)! ( j--  1/2--m2)! (1/2+M)! (1/2--M)!J 

With 
determine Vz ~,1/2, used in the proof of Proposition 4.1: 

(1/2; m l z/2, 1/2,..., 1/2; M, m 1 ..... mz_ l > 

= ~ < l / 2 ; m l z / 2 , ( z - 1 ) / 2 ; # 1 , # 2 >  
ktl ,k/2 

• (z/2, (z-- 1)/2; #1, #2 I z/2, 1/2,..., 1/2; M, ml,... , m~_ ,> 

this information one readily computes the CG coefficients which 
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= ( 1 / 2 ; m l z / 2 , ( z - 1 ) / 2 ; M ,  m l +  . . .  + m z  1) 

x ( ( z - 1 ) / 2 ; m l +  . . .  + m z _ l  I 1/2 ..... 1/2;M,  m l , . . . , m z _ l )  

= 6 m ,  M * m l +  ...  +mz , ( - - 1 )  (z-1)/2*m1+ ' *m~ ~ [2/(z + 1)!] 1/2 

x [(z /2  + m - - m  1 . . . . .  m z _ l ) [ ( z / 2 - - m + m l +  "" +rnz  1)!] 1/2 

We now derive some relations that are useful in the calculation of 
correlation functions of VBS states on ~-z. 

By taking derivatives of (A1), we obtain the intertwining property of 
the isometry Vk, s expressed in terms of the generators of the representa- 
tions, Denote by {S ~ [ ~ = x ,  y, z} the generators of D,, and by {J~ I ~ = 
x, y, z } the generators of Dj; then, with s = (k + 1 ) j, for c~ = x, y, z, 

(SC~@(@~2j+l)k..~ ~ 2 s + l @ j e @ ( @ , ~ 2 j + l ) k  1 

+ " " ~ 2 s + X | 1 7 4 1 7 4  ~) Vk, j =  V ~ , J '  

Up to trivial phases, by the uniqueness of the subrepresentations, V~,j can 
be written as 

vk, s = Wk, j U s , , , j  

iN and l, s' where for I s ' - r l<<. l<~s '+r ,  r , s ' e  2 , + r e N ,  Ur zis the inter- 
twining isometry satisfying 

(De |  U~,,r,l= Us, r, lD! 

and for j s  1N, k~ N o, Wk, j is the intertwining isometry satisfying 

( |  k Wk, j = Wk, jDkj  

Denote the generators of the representation Dkj by {K~}; then 

{J~ | (| 2j+ 1)k- ' + - �9 �9 ~] 2j+ 1 | J:((| 21+ 1) k-2 

_[_ ...(| l |  W k , j ~  - Wk, j K  ~ 

and by the permutation symmetry of the k factors 

1 
g~| (| k- I  Wk, j = -  ~ Wk, j K  ~ (A3) 

For the U~,r,t, denoting by L ~ the generators of Dr, and by R ~ the 
generators of Dr, 

(S~ |174  ~) U~,~,l= Us, r, IL ~ (A4) 
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W e  want to show that there  e x i s t s  a 2 ~ R such that, for  c~ = x ,  y ,  z, 

Us$,r,l( S~ | ~ 2r + 1) Us, r,, = 2 L  ~ (A5) 

U:r,l(~ 2s+l @ RC~) Us, r, 1 = (1 -- 2) L ~ (A6) 

The S ~, R ~, and U form irreducible representations of the Lie-algebra 
su(2), and satisfy 

[gs$,r, l(S~@~2r+l) gs, r,l, L ~] = U*r,,([S ~, S ~] @ ~2r+ 1) Us, r,, 

= 2  igc~,B,,U*r,/(ST @'~2r + l) Us, r, ' 
7 

[ U*r,,(~ 2,+ ~ |  ~) U,,~,,, L ~] = Us~r,l(~2s+l (~ [R ~, R~]) U,,r,, 

= E  ie~,~,~U*r,z(~2s+l@Rr)  Us, r,, 
Y 

Together with (A4), this proves (A5) and (A6). Next we calculate the value 
of 2. Note that S 2 = s ( s + l ) ~ ,  R 2 = r ( r + l ) ~ ,  and L 2 = l ( l + l ) ~ ,  where 
S 2 = Z~ (S~) 2, etc. Also define S @ R = Z~ S~ | RL Then, using the inter- 
twining property twice, we find 

S @ R U s ,  r . l = � 8 9  Us, r, l (A7) 

From (A5), using again the intertwining property, we obtaiff 

U * r , , S @ R U , , r , , =  {2l(l+ 1 ) - s ( s +  1)} ~2,+~ (A8) 

One can now find 2 from (A7) and (A8): 

1 l s ( s + l ) - r ( r + l )  

;~=~+~ I(l+1) 

If s = z/2, r = (z - 1 )/2, and / = 1/2, with z i> 2, this becomes 

z + 2  
2 -  

3 

Using this result together with (A3), one can check that, with k = z - l ,  

j = 1/2, and V= V= j,1/2, 

V * S ~ | 1 7 4  " -1  V 

= U ~ ,  (~ _ ~ I/~, ~/~ Wz*_ ~, ~/~ ( S  ~ | ( | ~ ~ ) z - ~ ) W~ ~, ~1~ U~/~, (z - 1)1~, ~1~ 

= U~,  ( ~ _ , ) / z  ~/~( S~ | ~ ~) u~/~, ( ,_~) /~ ,  ~/~ 

z + 2  
= J~ (A9) 

3 
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Analogously, 

V * ~ z + l @ J ~ @  (@~2) z -2  V 

1 
- -  U *  1 | KS) U z / 2 , ( z -  1)/2,1/2 z - -  1 z/2 (z 1)/2,1/2('~z+ 

1 
- (1 - 2 ) J  ~ 

z - - 1  

1 

3 
(A10) 

Using the SU(2) symmetry, one easily checks that 

From (A7) and (A3) one gets 

V*S@J|174 z-2 V= - z  +----~2 ~ 2 

(All) 

and combining this with (All), we find 

V*S~ (@'~2) z-2 V = -~ , f l  
z + 2  
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